This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK



# Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

# Transition Metal Ligands as Novel DNA-Base Substitutes

Christine Brotschi<sup>a</sup>; Christian J. Leumann<sup>a</sup>

<sup>a</sup> Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland

Online publication date: 09 August 2003

To cite this Article Brotschi, Christine and Leumann, Christian J.(2003) 'Transition Metal Ligands as Novel DNA-Base Substitutes', Nucleosides, Nucleotides and Nucleic Acids, 22: 5, 1195 - 1197

To link to this Article: DOI: 10.1081/NCN-120022834 URL: http://dx.doi.org/10.1081/NCN-120022834

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS Vol. 22, Nos. 5–8, pp. 1195–1197, 2003

# Transition Metal Ligands as Novel DNA-Base Substitutes

Christine Brotschi\* and Christian J. Leumann

Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland

## **ABSTRACT**

The base modified nucleoside dBP, carrying a non-hydrogen-bonding non-shape complementary base was incorporated into oligonucleotides (Brotschi, C.; Häberli, A.; Leumann C.J. Angew. Chem. Int. Ed. **2001**, *40*, 3012–3014). This base was designed to coordinate transition metal ions into well defined positions within a DNA double helix. Melting experiments revealed that the stability of a dBP: dBP base couple in a DNA duplex is similar to a dG: dC base pair even in the absence of transition metal ions. In the presence of transition metal ions, melting experiments revealed a decrease in duplex stability which is on a similar order for all metal ions (Mn<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>, Ni<sup>2+</sup>) tested.

In the last decade the interest to replace natural bases by other molecular entities has grown. Among others, <sup>[2–5]</sup> our laboratory follows the strategy to design a DNA base which acts as a ligand for transition metals. The generation of such unnatural bases could not only lead to a third orthogonal DNA base-pair, useful for the extension of the genetic code, but also to novel DNA structures with functional properties

1195

DOI: 10.1081/NCN-120022834 Copyright © 2003 by Marcel Dekker, Inc.

> Marcel Dekker, Inc. 270 Madison Avenue, New York, New York 10016

1525-7770 (Print); 1532-2335 (Online)

www.dekker.com

<sup>\*</sup>Correspondence: Christine Brotschi, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; E-mail: brotschi@ioc.unibe.ch.

1196 Brotschi and Leumann

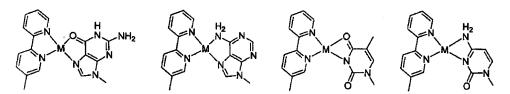

**dBP** 

Figure 1.

of interest in molecular electronics and nanochemistry. We wished first to explore, whether 'ligandoside' **dBP** (Fig. 1), can act as a universal nucleoside analogue, recognizing all four natural bases via coordinative bonds (Sch. 1).

The synthesis of the *C*-nucleoside **dBP**, the corresponding phosphoramidite building block as well as the synthesis of the oligonucleotides followed standard routes in *C*-nucleoside- and DNA- chemistry and will be described in detail elsewhere. Thermal denaturation experiments were performed on duplex 1 in the presence and absence of transition metal ions (see Table 1).

In the absence of transition metal ions, melting experiments revealed that the stability of a dBP: dBP base pair in a DNA duplex is similar to a dG: dC base pair. The  $T_m$  values of a dBP: natural base pair under the same conditions are lower by 2–6.1 K compared to that of a natural dA: dT base pair in the given sequence context ( $T_m$  of a dA: dT base pair is 64.0°C). In the presence of transition metal ions the  $T_m$ 's are even slightly more depressed. The destabilization is very alike for all transition metal ions tested (see Table 1) and follows the order G > A > C > T. This order corresponds to the order of preferential stacking of the bases. A spacial case revealed to be  $Mn^{2+}$ , in the presence of which we observed in all cases a second, less hypochromic transition at ca.  $70^{\circ}C$  for yet unknown reasons. Whether the transition metal ions tested do coordinate to the dBP or to the backbone or both is currently



Scheme 1. Proposed models for natural base recognition with dBP via transition metal ion coordination.

Table 1. Sequence of the 19-mer duplex 1 and  $T_m$  data in the absence and presence of various metal ions, as extracted from UV melting curves (260 nm, 1.2  $\mu$ M, in 10 mM NaH<sub>2</sub>PO<sub>4</sub>, 150 mM NaCl, pH 7.0).

|   | 5'-GAT GAC -BP-GC TAG CTA GGA C<br>3'-CTA CTG - Y -CG ATC GAT CCT G |                          |                        | 1                        |                          |
|---|---------------------------------------------------------------------|--------------------------|------------------------|--------------------------|--------------------------|
| Y | No metal                                                            | 0.1 mM MnCl <sub>2</sub> | 6 μM CuCl <sub>2</sub> | 0.2 mM ZnCl <sub>2</sub> | 0.2 mM NiCl <sub>2</sub> |
| T | 57.9                                                                | 58.7, 70.1               | 56.9                   | 57.2                     | 57.3                     |
| C | 59.7                                                                | 59.2, 70.7               | 57.5                   | 57.6                     | 58.1                     |
| Α | 61.4                                                                | 60.6, 72.2               | 58.4                   | 58.6                     | 58.9                     |
| G | 62.0                                                                | 61.4, 70.9               | 59.5                   | 60.0                     | 59.9                     |

not known. Possible reason for the decrease in duplex stability might be an unfavourable geometry of the corresponding base-pair, leading to backbone distortion or to loss of base stacking interactions, or to the absence of metal-base complex formation. The currently available data do not yet conclusively support the existence of metal mediated recognition of natural bases by dBP.

## **REFERENCES**

- Brotschi, C.; Häberli, A.; Leumann, C.J. Angew. Chem. Int. Ed. 2001, 40, 3012–3014.
- 2. Meggers, E.; Holland, P.L.; Tolman, W.B.; Romesberg, F.E.; Schultz, P.G. J. Am. Chem. Soc. **2000**, *122*, 10,714–10,715.
- 3. Weizman, H.; Tor, Y. J. Am. Chem. Soc. 2001, 123, 3375–3376.
- 4. Tanaka, T.; Yamada, Y.; Shionoya, M. J. Am. Chem. Soc. **2002**, *124*, 8802–
- 5. Tanaka, T.; Tengeiji, A.; Kato, T.; Toyama, N.; Shiro, M.; Shionoya, M. J. Am. Chem. Soc. **2002**, *124*, 12,494–12,498.